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Abstract. A new definition is introduced for the matrix geometric mean of a set of k positive
definite n×n matrices together with an iterative method for its computation. The iterative method
is locally convergent with cubic convergence and requires O(n3k2) arithmetic operations per step
whereas the methods based on the symmetrization technique of Ando, Li and Mathias [Linear Algebra
Appl., 385 (2004), pp. 305–334] have complexity O(n3k!2k). The new mean is obtained from the
properties of the centroid of a triangle rephrased in terms of geodesics in a suitable Riemannian
geometry on the set of positive definite matrices. It satisfies most part of the 10 properties stated
by Ando, Li and Mathias; a counterexample shows that monotonicity is not fulfilled.
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1. Introduction. In certain physical applications one has to represent through
a single average matrix G the results of several experiments made up by a set of many
positive definite n × n matrices A1, A2, . . . , Ak. The arithmetic mean 1

k

∑k
i=1 Ai is

not well-suited to represent the needed quantity since for physical reasons one of the
required properties is that the average of A−1

1 , . . . , A−1
k as well, must coincide with

G−1 (see [10, 11]). Among the classical means of positive real numbers a1, . . . , ak,
this property is satisfied by the geometric mean g = (

∏k
i=1 ai)1/k.

1.1. Means of two matrices. There is large agreement on what is the right
definition of the geometric mean G = A#B of two positive definite matrices A and
B, namely G := A(A−1B)1/2 (see [2, Chapter 4] for a concise treatment of the topic),
where given a square matrix M having no nonpositive real eigenvalues, M1/2 denotes
the unique solution of the equation X2 = M whose eigenvalues lie in the right half
plane. That definition was given in the seventies by Pusz and Woronowicz [13], but
there are many other equivalent characterizations, the most notable of which has
been provided recently in [8, 10] and is related to the Riemannian geometry obtained
endowing the set Pn of positive definite matrices of size n with the scalar product
g(M,N) = tr(A−1MA−1N) in the tangent space TAPn at A.

The link to the geometric mean is through geodesics, in fact it can be proved that
there exists a unique geodesic joining two positive definite matrices A and B whose
parameterization is

A#tB := A1/2(A−1/2BA−1/2)tA1/2, t ∈ [0, 1],

and A#B = A#1/2B is its midpoint.
Here and hereafter, we will use the symbols log(A), exp(A), At := exp(t log(A)) to

denote the usual functions of a square matrix. If A is diagonalizable, namely if there
exists an invertible matrix M and a diagonal matrix D = diag(λ1, . . . , λn) such that
A = MDM−1, then f(A) := Mf(D)M−1, where f(D) := diag(f(λ1), . . . , f(λn)).
The above definition of A1/2 coincides with this one (see [7]).

We briefly recall some properties of the matrix exponential and logarithm which
will be useful in the following, the proofs can be found in [7].

Theorem 1.1. The following properties hold:
1. log(αI) = log(α)I for any positive constant α, in particular log I = 0;
2. if M and N commute and have real positive eigenvalues then log(MN) =

log(M) + log(N);
1
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3. for any invertible matrix M , f(MAM−1) = Mf(A)M−1, in particular exp(MAM−1) =
M exp(A)M−1 and log(MAM−1) = M log(A)M−1;

4. det(exp(A + B)) = det(exp(A)) det(exp(B));
5. exp(−X) = exp(X)−1.

In the setting of matrix functions, it is often easy to prove general results in an
elegant way. For example the following result holds.

Theorem 1.2. Let A and B be positive definite matrices and let f be a function
defined on the eigenvalues of A−1B, then Af(A−1B) = A1/2f(A−1/2BA−1/2)A1/2

Proof. First, observe that the matrix A−1B is diagonalizable. From the above
definition of matrix function it follows that for any diagonalizable matrix A one has
f(N−1AN) = N−1f(A)N , thus

Af(A−1B) = Af(A−1/2A−1/2BA−1/2A1/2) = A1/2f(A−1/2BA−1/2)A1/2.

Theorem 1.2 explains why A#1/2B = A(A−1B)1/2.

1.2. Means of more than 2 matrices. The generalization of the definition of
geometric mean to more than two positive definite matrices seems to be considerably
more difficult.

Ando, Li and Mathias [1] proposed a list of ten properties (the ALM properties)
that a “good” geometric mean G(·) of k matrices should satisfy. Here, for simplicity
we report this list in the case k = 3 where we write A > B if A−B is positive definite
and A > B if A−B is positive semi-definite.
P1 Consistency with scalars. If A, B, C commute then G(A,B, C) = (ABC)1/3.
P2 Joint homogeneity. G(αA, βB, γC) = (αβγ)1/3G(A,B, C), for α, β, γ > 0.
P3 Permutation invariance. For any permutation π(A,B, C) of A, B, C, it holds

that G(A,B, C) = G(π(A,B, C)).
P4 Monotonicity. If A > A′, B > B′, C > C ′, then G(A,B, C) > G(A′, B′, C ′).
P5 Continuity from above. If An, Bn, Cn are monotonic decreasing sequences con-

verging to A, B, C, respectively, then G(An, Bn, Cn) converges to G(A,B, C).
P6 Congruence invariance. For any nonsingular S, it holds that S∗G(A,B, C)S =

G(S∗AS, S∗BS, S∗CS).
P7 Joint concavity. If A = λA1+(1−λ)A2, B = λB1+(1−λ)B2, C = λC1+(1−λ)C2,

then G(A,B, C) > λG(A1, B1, C1) + (1− λ)G(A2, B2, C2) for 0 < λ < 1.
P8 Self-duality. G(A,B, C)−1 = G(A−1, B−1, C−1).
P9 Determinant identity. det G(A,B, C) = (det A det B det C)1/3.
P10 Arithmetic–geometric–harmonic mean inequality.

A + B + C

3
> G(A,B, C) >

(
A−1 + B−1 + C−1

3

)−1

.

It has been proved in [1] that P5 and P10 are consequences of the others. Notice that
all these properties can be easily generalized to the mean of any number of matrices.

For k = 2 this list uniquely defines G = A#B = A(A−1B)1/2. In the case k > 2
there are infinitely many means satisfying the ALM properties.

In [1] Ando, Li and Mathias propose a numerical scheme for computing a mean
of k matrices which satisfies the ALM properties. For k = 3 they show that the
sequences

A(ν+1) = B(ν)#C(ν),
B(ν+1) = C(ν)#A(ν), ν = 0, 1, . . . ,
C(ν+1) = A(ν)#B(ν),

(1.1)
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obtained with A(0) = A, B(0) = B, C(0) = C, converge to a common limit G satisfying
the ALM properties. For a set A1, . . . , Ak of k > 3 matrices these sequences can be
defined as

A
(ν+1)
i = Gk−1(A

(ν)
1 , . . . , A

(ν)
i−1, A

(ν)
i+1, . . . , A

(ν)
k ), i = 1, . . . , k, (1.2)

where Gk−1 denotes the mean of k − 1 matrices recursively defined by means of
the same relations. Indeed, also these sequences converge to a common limit which
satisfies the ALM properties. We refer to this limit as the ALM mean. It is proved
that convergence is linear with convergence factor 1/2. It is easy to find out that
the computational cost of this scheme for general k is O(n3k!

∏k
i=3 pi) where n is the

matrix size and pi is the number of iterations needed in the computation of the means
of i matrices.

A substantial improvement has been achieved in [6] relying on these observations:
in the sequences (1.1) converging to the ALM mean, A(ν+1) is the midpoint of the
geodesics joining the matrix B(ν) with C(ν); in the Euclidean geometry the limit of
this sequence is the centroid of the triangle ABC; the centroid is also located in the
median which connects A with the midpoint of the edge BC at distance 2/3 from A,
that is A#2/3(B#1/2C); the three medians have the centroid as common point. Due
to the negative curvature of Pn the three points A#2/3(B#1/2C), B#2/3(C#1/2A),
C#2/3(A#1/2B) do not coincide, but are closer to each other than the original ma-
trices.

Therefore the iteration is given by

A(ν+1) = A(ν)#2/3(B(ν)#C(ν)),
B(ν+1) = B(ν)#2/3(C(ν)#A(ν)), ν = 0, 1, . . .
C(ν+1) = C(ν)#2/3(A(ν)#B(ν)).

It is proved that the three matrix sequences have a common limit, different from the
ALM mean, which satisfies the ALM properties, and the convergence is cubic. We
will refer to this mean as the BMP mean. The same iteration can be generalized to
the case of k > 3 matrices.

The computational cost is the same as the ALM scheme, however, the number pi

of iterations is reduced by relying on a numerical scheme having cubic convergence
so the acceleration in certain applications is dramatic. Unfortunately, the growth of
the computational cost with k is still exponential; therefore, for moderate values of k
also this iteration is infeasible.

The idea of [1, 6] can be generalized by considering new means obtained by
assembling existing ones through a recursive procedure. Unfortunately, it has been
proved that no such definition could produce a mean whose computational cost is
polynomial with respect to k [12]. In the next section we follow a different direction.

1.3. New results. In this paper, by relying on the geometric interpretation
given in terms of geodesics in the Riemannian geometry on the variety Pn, we intro-
duce a new iteration for computing a geometric mean of k matrices with the following
features: unlike the known methods, the computation of the mean of k matrices
does not require computing the mean of k − 1 matrices and no recursive process is
needed; the convergence speed of the new iteration is cubic; its computational cost is
polynomial, namely O(n3k2pk), where pk is the number of iterations needed by the
method (typically just a few); for k = 2 the limit is A#B, so the proposed mean
generalizes the geometric mean of two matrices; the limit of k sequences satisfies the
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ALM properties P1–P3, P6, P8 and P9; we provide a counterexample where P4 is
not satisfied. The counterexample requires that the matrices be very far from each
other; counterexamples where the matrices Ai, i = 1, . . . , k are in a relatively small
neighborhood of their mean are not known. We refer to this new mean as the Cheap
Mean.

The idea on which this iteration is based relies once again on the geometric
interpretation of the centroid G of a triangle ABC. In the Euclidean geometry the
centroid G satisfies the equations

G = A +
1
3
((B −A) + (C −A) + (A−A)),

that is, it lies in the geodesic passing through A and tangent in A to the arithmetic
mean of the tangent vectors in A of the three geodesics connecting A with B, C and
A, respectively. Obviously, the third vector is zero. Similar expressions are obtained
starting from B and C, respectively.

In the Riemannian manifold Pn this procedure gives three different points A′, B′

and C ′, and can be viewed as a step of an iterative procedure converging to a possible
mean. Observe that the mean of the tangent vectors is done in the tangent space at
a point which is Euclidean, where it is natural to choose the arithmetic mean.

This procedure can be easily generalized to k > 3. Given A1, . . . , Ak, it is enough
to consider, for each i, the geodesic starting at Ai and whose tangent vector is the
arithmetic mean of the k tangent vectors at Ai to the geodesic joining Ai with Aj

(where if i = j the vector is 0). Then A′
i will be the point of that geodesic for t = 1.

Since the tangent vector at A to the geodesic joining A and B is the symmetric
matrix A log(A−1B), one obtains the following iteration

A
(ν+1)
i = A

(ν)
i exp

1
k

k∑
j=1,j 6=i

log((A(ν)
i )−1A

(ν)
j )

, i = 1, . . . , k, (1.3)

with A
(0)
i = Ai, i = 1, . . . , k. Observe that, by Theorem 1.2, (1.3) can be equivalently

rewritten as

A
(ν+1)
i = (A(ν)

i )1/2 exp

1
k

k∑
j=1,j 6=i

log((A(ν)
i )−1/2A

(ν)
j (A(ν)

i )−1/2)

 (A(ν)
i )1/2. (1.4)

This equation shows that the sequences {A(ν)
i }ν are formed by symmetric positive

definite matrices.
For k = 2 the first step of the iteration yields A

(1)
1 = A exp( 1

2 (log(A−1B))) =
A#B and similarly B

(1)
1 = A#B. Thus, in the case of two matrices the iteration

yields the geometric mean since the first step.
We prove that if the sequences {A(ν)

i }ν converge to the same limit for i = 1, . . . , k,
then the convergence is cubic. Moreover we give conditions under which convergence
occurs. Even though the local convergence condition may appear rather restrictive,
from the many numerical experiments that we have performed we never encountered
failure of convergence.

We have implemented the computation of the Cheap Mean in the Matrix Mean
Toolbox, available for Matlab and Octave [5], and performed some numerical tests.
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In particular, we have compared the Cheap mean with the “least square geometric
mean” [3], also called “Riemannian geometric mean” [10], or Karcher mean [9], that
is, the unique positive definite solution of the matrix equation

k∑
i=1

X1/2A−1
i X1/2 = 0. (1.5)

It is known that this mean satisfies all the ALM properties of a geometric mean
except perhaps the monotonicity property, for which no counterexample is known so
far. By means of numerical experiments we show that the Cheap mean is much faster
to compute than the Karcher mean (if for the latter, the algorithms of [9, 10] or a
gradient algorithm applied to (1.5) are used). In fact, in all the experiments performed
so far, iteration (1.3) converges to the Cheap mean in at most 5 iterations with a
relative error of the order of 10−15 independently of the condition number, whereas
for the Karcher mean, the iterations of [9, 10] do not converge in certain cases and
in the other cases require a larger computational cost. The gradient methods require
always a larger computational cost.

We wish to point out that the iteration of [9] is given by

X(ν+1) = X(ν) exp

(
1
k

k∑
i=1

log((X(ν))−1Ai)

)
, X0 = A1, (1.6)

which is very similar to our iteration (1.3). In fact, each step of (1.3) can be viewed
as k first steps of iteration (1.6) with Ai = A

(ν)
i , i = 1, . . . , k and X0 = A

(ν)
i . In [9]

the convergence of (1.6) has been proved in the special orthogonal group provided
that the matrices Ai are sufficiently close to each other. The numerical tests show
that iteration (1.6) does not converge if the matrices Ai are positive definite and not
close each other and that when convergence occurs it is linear.

Another comparison that we have performed concerns the definition of geometric
mean by

G = exp

(
1
k

k∑
i=1

log Ai

)
.

This mean, referred to as ExpLog mean, is studied in [1], and can be computed with
a cost of O(n3k) ops. However, its properties are poorer than the properties of the
Cheap mean. First, the ExpLog mean of two matrices is different from A#B. Second,
it is not congruence invariant as shown in the numerical experiments. Third, the
ExpLog mean looses the monotonicity property in a very large part of cases. In fact,
from a wide numerical experimentation it turns out that even though the matrices
Ai are tightly close to each other and have a moderate condition number, this mean
fails to be monotone. Whereas, the Cheap mean fails to be monotone only when
the matrices are severely ill conditioned and they are not tightly close to each other.
Finally, for modeling reasons, any practical definitions of geometric mean should lie in
a small neighborhood; from numerical experiments it turns out that the ALM, BMP,
and Cheap means form a very tight cluster while the ExpLog mean lies very far from
this cluster.

The paper is organized as follows: in Section 2 we prove the local cubic conver-
gence of iteration (1.4), in Section 3 we prove most of the ALM properties for the
Cheap mean and provide a counterexample for the monotonicity. In Section 4 we
discuss the results of the numerical experiments.
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2. Convergence analysis. Let us consider a single step of iteration (1.4) and
for notational simplicity we write

A′
i = A

1/2
i exp

1
k

k∑
j=1

log(A−1/2
i AjA

−1/2
i )

A
1/2
i . (2.1)

Observe that the condition i 6= j is not needed in (2.1) since the term obtained for
i = j is zero.

Let us introduce the following notation

A
−1/2
j AiA

−1/2
j = I + A

−1/2
j (Ai −Aj)A

−1/2
j = I + Xi,j ,

Xi,j = A
−1/2
j Ei,jA

−1/2
j , Ei,j = Ai −Aj ,

so that equation (2.1) can be rewritten as

A′
i = A

1/2
i exp

1
k

k∑
j=1

log(I + Xi,j)

A
1/2
i . (2.2)

We recall that if ρ(X) < 1 then

log(I + X) = X − 1
2X2 + 1

3X3 − · · · .= X − 1
2X2

exp(W ) = I + W + 1
2W 2 + 1

3!W
3 + · · · .= I + W + 1

2W 2
(2.3)

where .= denotes equality up to terms of the third order in X or in W .
Here we assume that the matrices are close enough to each other, more precisely,

we assume that

‖A−1/2
j Ei,jA

−1/2
j ‖ 6 ε < 1, i, j = 1, . . . , k,

for ε > 0 small enough, where ‖ · ‖ denotes the spectral norm.
Since ‖Xi,j‖ < 1, applying (2.3) with X = Xi,j in (2.2) yields

A′
j

.= A
1/2
j

[
I + Zj + 1

2Z2
j

]
A

1/2
j ,

Zj
.= 1

k

∑k
i=1(Xi,j − 1

2X2
i,j),

whence

A′
j

.= Aj +
1
k

k∑
i=1

Ei,j −
1
2k

k∑
i=1

Ei,jA
−1
j Ei,j +

1
2k2

k∑
r,s=1

Er,jA
−1
j Es,j .

Writing down the same equation for A′
h and subtracting the two expressions yields

the equation which relates E′
h,j = A′

h −A′
j to Ei,j :

E′
h,j

.=Eh,j +
1
k

k∑
i=1

(Ei,h − Ei,j)−
1
2k

k∑
i=1

(Ei,hA−1
h Ei,h − Ei,jA

−1
j Ei,j)

+
1

2k2

k∑
r,s=1

(Er,hA−1
h Es,h − Er,jA

−1
j Es,j).
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Now, since Eh,j + 1
k

∑k
i=1(Ei,h − Ei,j) = Ah −Aj + 1

k

∑k
i=1(Aj −Ah) = 0, one has

E′
h,j

.=− 1
2k

k∑
i=1

(Ei,hA−1
h Ei,h − Ei,jA

−1
j Ei,j)

+
1

2k2

k∑
r,s=1

(Er,hA−1
h Es,h − Er,jA

−1
j Es,j).

(2.4)

This implies that there exists a constant σ, depending only on the matrices
A1, . . . , Ak such that maxi,j ‖E′

i,j‖ < σ maxi,j ‖Ei,j‖2, so that if the sequence {E(ν)
h,j}ν

converges to zero the convergence is at least quadratic.
We can prove more by observing that

1
k

k∑
i=1

Ei,hA−1
h Ei,h =

1
k

k∑
i=1

AiA
−1
h Ai − 2M + Ah,

1
k2

k∑
i,j=1

Ei,hA−1
h Ej,h = MA−1

h M − 2M + Ah,

where we set M = 1
k

∑k
i=1 Ai. Replacing the latter equations in (2.4) one obtains

E′
h,j = −1

2

(
M(A−1

h −A−1
j )M − 1

k

k∑
i=1

Ai(A−1
h −A−1

j )Ai

)
.

Since M = 1
k

∑k
i=1 Ai, formally the latter expression is a quadratic form in A1, . . . , Ak,

namely,

E′
h,j =

k∑
r,s=1

ηr,sAr(A−1
h −A−1

j )As,
1

2k2
(kI − eeT ) = (ηr,s),

where e = (1, . . . , 1)T , that is, the matrix associated with this quadratic form is

Qh,j =
1

2k2
(kI − eeT )⊗ (A−1

h −A−1
j ),

where ⊗ denotes the Kronecker product.
Now, the matrix kI − eeT can be rewritten as

kI − eeT = kUT−1UT , T = UT U (2.5)

where U ∈ Rk×(k−1), Uei = ei − e(i−1) mod k, for i = 1, . . . , k − 1, and T = UT U is
the (n− 1)× (n− 1) symmetric tridiagonal matrix having diagonal entries equal to 2
and super-diagonal entries equal to -1. In fact, the two matrices in the left-hand and
in the right-hand side of (2.5) have the vector e in their kernels and thus coincide in
the linear space orthogonal to e spanned by the columns of U . Therefore

Qh,j =
1
2k

[U ⊗ I][T−1 ⊗ (A−1
h −A−1

j )][UT ⊗ I]
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so that we may write

E′
h,j =

[
A1 · · · Ak

]
Qh,j

 A1

...
Ak


=
[

E1,2 · · · Ek−1,k

]( 1
2k

T−1 ⊗ (A−1
h Eh,jA

−1
j )
) E1,2

...
Ek−1,k


=

1
2k

k−1∑
r=1

k−1∑
s=1

γr,sEr,r+1A
−1
h Eh,jA

−1
j Es,s+1,

with T−1 = (γr,s). Denoting γ = γ(k) = 1
2k

∑
r,s γr,s one has

‖E′
h,j‖ 6 ‖Eh,j‖γ(k) max

r
‖Er,r+1‖2‖A−1

h ‖ · ‖A−1
j ‖.

Therefore,

max
i,j

‖E′
i,j‖ 6 γ(k) max

i,j
‖Ei,j‖3 ·max

j
‖A−1

j ‖2. (2.6)

We synthesize the above discussion in the following result, where we give also a
condition such that iteration (1.3) converges.

Theorem 2.1. If the sequences A
(ν)
i generated by (1.3) have a common limit G,

then there exists a constant γ such that ‖A(ν+1)
i −A

(ν+1)
j ‖ 6 γ‖A(ν)

i −A
(ν)
j ‖3, for any

i, j = 1, . . . , k, i.e., convergence has order at least 3. If maxj ‖A−1
j ‖ · maxi,j ‖Ai −

Aj‖ < ε for i, j = 1, . . . , k, where 0 < ε < 1/3 then maxj ‖(A(ν)
j )−1‖ ·maxi,j ‖A(ν)

i −
A

(ν)
j ‖ < ε for i, j = 1, . . . , k, for any ν, moreover maxi,j ‖A(ν)

i −A
(ν)
j ‖ 6 (2ε/(1−ε))ν ,

and the sequences A
(ν)
i converge to the same limit G.

Proof. The first part of the theorem follows from (2.6). Concerning the second
part, denote δ = maxi,j ‖Ai − Aj‖, δ′ = maxi,j ‖A′

i − A′
j‖, f = maxi ‖A−1

i ‖, f ′ =
maxi ‖A′

i
−1‖, and observe that ‖A−1

j (Ai − Aj)‖ 6 δf . Let us prove that if δf < ε

with ε sufficiently small, then also δ′f ′ 6 ε so that ‖A′
j
−1(A′

i − A′
j)‖ 6 ε as well.

From (2.4) one finds that

δ′ 6 2δ2 max
i

‖A−1
i ‖ = 2δ2f. (2.7)

Now we provide an upper bound to f ′ by proving that

f ′ 6 f/(1− δf). (2.8)

We rely on the following inequalities which derive directly from the definition of the
matrix functions exp and log by taking the norms of both sides of (2.3):

‖ exp(X)‖ 6 exp(‖X‖)
‖ log(I + X)‖ 6 − log(1− ‖X‖), if ‖X‖ < 1.

(2.9)

We note∥∥∥A′
i
−1
∥∥∥ 6

∥∥∥∥∥∥exp

−1
k

k∑
j=1

log(A−1
i Aj)

∥∥∥∥∥∥ · ∥∥A−1
i

∥∥ 6

∥∥∥∥∥∥exp

−1
k

k∑
j=1

log(A−1
i Aj)

∥∥∥∥∥∥ f.

(2.10)
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By using (2.9) one finds that∥∥∥∥∥∥exp

−1
k

k∑
j=1

log(A−1
i Aj)

∥∥∥∥∥∥ 6 exp

∥∥∥∥∥∥1
k

k∑
j=1

log(A−1
i Aj)

∥∥∥∥∥∥


6 exp

1
k

k∑
j=1

∥∥log(A−1
i Aj)

∥∥
= exp

1
k

k∑
j=1

∥∥log(I + A−1
i Ej,i)

∥∥
Now, since ‖A−1

i Ej,i‖ 6 δf 6 ε < 1 we may apply (2.9) and get∥∥∥∥∥∥exp

−1
k

k∑
j=1

log(A−1
i Aj)

∥∥∥∥∥∥ 6 exp

−1
k

k∑
j=1

log(1− ‖A−1
i Ej,i‖


=

 k∏
j=1

(1− ‖A−1
i Ej,i‖)

−1/k

6(1− δf)−1

which in the view of (2.10) yields (2.8). Now we are ready to prove that if the
condition δf 6 ε is satisfied then δ′f ′ 6 ε as well. Combining (2.7) and (2.8) yields

δ′f ′ 6 (δf)2
2

1− δf
.

Clearly, if ε < 1/3 then δ′f ′ < ε and from (2.7) one deduces that

δ′ 6
2
3
δ.

An inductive process completes the convergence proof.
Proving global convergence is still an open problem. From the many numerical

experiments that we have performed we have always observed convergence. It is
interesting to point out that if the matrices Ai pairwise commute then convergence
occurs in just one step for any k-tuple of positive definite matrices A1, . . . , Ak.

3. The ALM properties. A large number of the ALM properties are satisfied
by the Cheap mean. In this section we give a formal proof for the properties P1,
P2, P3, P6, P8, and P9, while for P4 we provide a counterexample which shows that
monotonicity is not fulfilled by our mean. The proof of validity of P5, P7 and P10 is
usually performed relying on P4. We have no counterexample for P5, P7 and P10.

For the sake of notational simplicity we provide the proofs in the case k = 3.
The generalization to any k is straightforward. We show that starting with A0 = A,
B0 = B and C0 = C, properties P1, P2, P6, P8 and P9, are held by A1 itself (and
B1 and C1). This fact can be used in an induction argument, proving that the same
properties hold for Ak, Bk and Ck, for each k > 0 and thus for the limit.
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P1 Consistency with scalars. If A, B, C commute, then

A1 = A exp
(

1
3
(log(A−1B) + log(A−1C))

)
=A exp

(
1
3
(log(A−1BA−1C)

)
=A(A−2BC)1/3 = (ABC)1/3.

where we have used Property 2 of Theorem 1.1. The same holds for B1 and
C1.

P2 Joint homogeneity. If Â = αA, B̂ = βB and Ĉ = γC, with α, β, γ > 0, then

Â1 =αA exp
(

1
3

(
log(A−1B

β

α
) + log(A−1C

γ

α
)
))

=αA exp
(

1
3

(
log(A−1B) + log(A−1C) + log(

βγ

α2
I)
))

=αA exp
(

1
3
(log(A−1B) + log(A−1C))

)
exp log((

βγ

α2
)1/3) = (αβγ)1/3A1,

where we have used Properties 1 and 2 of Theorem 1.1. The same holds for
B1 and C1.

P3 Permutation invariance. It follows immediately from the definition.
P4 Monotonicity. This property is not satisfied in general as it is shown by the

following numerical counterexample.
Let

A = I, B =

 ε 0 0
0 1 0
0 0 1

 , C =

 1 0 0
0 ε 0
0 0 1

 , Ã = A + heeT .

For ε = 0.0001 and 0 < h 6 3 it holds that Ã(h) > A and the matrix
G(Ã, B, C) − G(A,B, C) has a negative eigenvalue. For instance, for h = 1
the eigenvalues are -2.4131e-3, 2.2853e-2, 1.0826e-1.

P6 Congruence invariance. Observe that starting from Â = S∗AS, B̂ = S∗BS,
Ĉ = S∗CS one has

Â1 =Â exp
(

1
3
(log(Â−1B̂) + log(Â−1Ĉ))

)
=S∗AS exp

(
1
3
(log(S−1A−1S−∗S∗BS) + log(S−1A−1S−∗S∗BS)

)
=S∗ASS−1 exp

(
1
3
(log(A−1B) + log(A−1C))

)
S = S∗A1S,

where Property 3 of Theorem 1.1 has been used. The same holds for B̂1 and
Ĉ1.

P8 Self duality. Observe that

A−1
1 =exp(−1

3
(log(A−1B) + log(A−1C)))A−1

=exp(log(B−1A)1/3 + log(C−1A)1/3)A−1

=A−1 exp(log(AB−1)1/3 + log(AC−1)1/3) = Â1,

where Â1 is obtained from Â = A−1, B̂ = B−1 and Ĉ = C−1, thus the
self-duality holds for A1. The same holds for B1 and C1.
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P9 Determinant identity. The identity follows from det(eA+B) = det(eAeB), in fact
for A, B and C

det A1 =det A det(exp(log(A−1B)1/3)) det(exp(log(A−1C)1/3))

=det A det(A−1B)1/3 det(A−1C)1/3 = (det A det B det C)1/3,

where Property 4 of Theorem 1.1 has been used. The same holds for det B1

and det C1.
Observe that in the counterexample concerning monotonicity the matrices A, B

and C are quite far from each other and do not satisfy the convergence conditions of
Theorem 2.1.

We do not have any counterexample to the monotonicity where the matrices Ai

satisfy the convergence conditions of Theorem 2.1, and we believe that monotonicity
is satisfied “locally”, i.e., if the set of matrices Ai, i = 1, . . . , k lie in a neighborhood
of their mean.

Observe, moreover, that A1 verifies properties P1, P2, P6, P8 and P9, thus, it
can be viewed as a rough mean.

4. Numerical experiments. We have implemented the computation of the
Cheap mean together with other algorithms for matrix means in the Matrix Means
Toolbox [5] available for Matlab and Octave. Here we report part of the many nu-
merical experiments that we have performed.

In the first set of tests we compare the execution times of computing the Cheap
mean and the mean of [6], in the following BMP mean, which among the ALM means
is the fastest available.

The test matrices are generated randomly with different values of their condition
numbers according to the following Matlab commands:

n = 10; W = rand(n)− rand(n); X = W′ ∗ W; X = X− eye(n) ∗ min(eig(X));

X = X/norm(X); X = X + eye(n)/(cnd− 1); X = X/norm(X);

so that the parameter cnd coincides with the condition number of X.
For various values of the condition number cnd, for n = 4 and k = 3 : 10, in Table

4 we report the CPU time required to compute the Cheap mean and the BMP mean
together with the Euclidean distance of the two means. A “∗” denotes a CPU time
larger than 104 seconds. The number of iterations required to compute the Cheap
mean as well as the number of outer iterations in the recursive process to compute
the BMP mean has been between 4 and 5.

The exponential growth with k of the complexity of the BMP mean is evident,
while the polynomial complexity of the Cheap mean makes the computation possible
even for much larger values of k. It is interesting to observe that the Cheap mean
and the BMP mean are not so far from each other.

The second bunch of tests compares the Cheap mean with the mean

G = exp

(
1
k

k∑
i=1

log(Ai)

)

which, for simplicity we call ExpLog mean, in order to find out the cases where the
monotonicity property is not satisfied. To this end, we consider a 3×3 diagonal matrix
A1 with diagonal entries 1, δ, δ2, for 0 < δ < 1 so that ‖A1‖ = 1 and its condition
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cnd= 1.e2 cnd= 1.e4 cnd= 1.e8
k Cheap BMP Dist. Cheap BMP Dist. Cheap BMP Dist.
3 1.e-2 1.e-2 5.e-3 1.e-2 1.e-2 3.e-2 1.e-2 1.e-2 3.e-2
4 2.e-2 2.e-1 6.e-3 2.e-2 2.e-1 2.e-2 2.e-2 2.e-2 8.e-2
5 2.e-2 1.e0 7.e-3 3.e-2 2.e0 4.e-2 3.e-1 2.e0 5.e-2
6 3.e-2 1.e+1 5.e-2 4.e-2 3.e+1 2.e-2 4.e-2 3.e+1 5.e-2
7 3.e-2 2.e+2 8.e-3 5.e-3 4.e+2 2.e-2 5.e-2 4.e+2 1.e-2
8 4.e-2 2.e+3 1.e-2 6.e-2 5.e+3 2.e-2 7.e-2 5.e+3 3.e-2
9 4.e-2 * – 7.e-2 * – 7.e-2 * –

10 5.e-2 * – 9.e-2 * – 1.e-1 * –
Table 4.1

CPU times in seconds, rounded to one digit, required to compute the BMP mean G1 and the
Cheap mean G2, together with the distances ‖G1 − G2‖2. A “∗” denotes a CPU time larger than
104 seconds.

ε 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 1e1
cnd=1e4 0 0 0 0 0 5 34 64
cnd=1e6 0 0 0 7 28 24 58 78
cnd=1e8 0 0 21 45 16 20 71 77
cnd=1e10 0 36 41 24 6 22 77 82
cnd=1e12 39 56 14 5 3 40 85 85

Table 4.2
Percentage of cases where the ExpLog mean of A1, A2, A3 fails to be monotone where A2 and

A3 are chosen in a neighborhood of A1 of radius ε and A1 has condition number cnd

number is 1/δ2, and define A2 = A1 + εU1, A3 = A1 + εU2, where U1, U2 are positive
definite random matrices with norm 1, generated as follows:

W = rand(3)− rand(3); W = W ∗ W′; U = W/norm(W);

In this way the matrices A2, A3 stay in the sphere of center A1 and radius ε. We have
generated 100 random values and computed the number of cases where the matrix
G(A1 + 0.01 ∗ A2, A2, A3) − G(A1, A2, A3) is not positive definite. Tables 4.2 and
4.3 report these values according to the conditioning of A1 and to the radius of the
neighborhood of A1. It is evident that the ExpLog mean fails to be monotone even
for moderate values of the condition number and for relatively small neighborhoods
of A1, whereas the Cheap mean seems to be more robust.

It is not difficult to construct numerical examples showing that the ExpLog mean

is not congruence invariant, for instance if A =
[

5 4
4 5

]
and S =

[
1 0
0 2

]
,

S∗ exp
(

1
2
(log(A) + log(I))

)
S =

[
2 2
2 8

]
,

exp
(

1
2
(log(S∗AS) + log(S∗S))

)
≈
[

3.0 5.4
5.4 13.5

]
.

The last bunch of tests, taken from [4], reports the number of iterations needed
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ε 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 1e1
cnd=1e4 0 0 0 0 0 0 0 0
cnd=1e6 0 0 0 0 0 0 1 0
cnd=1e8 0 0 0 0 0 4 33 23
cnd=1e10 0 0 0 0 0 4 33 23
cnd=1e12 0 0 0 1 1 18 70 67

Table 4.3
Percentage of cases where the Cheap mean of A1, A2, A3 fails to be monotone where A2 and

A3 are chosen in a neighborhood of A1 of radius ε and A1 has condition number cnd

cond=1.e2 cond=1.e4
k\X0 I AM Cheap I AM Cheap
3 74 26 17 114 89 41
4 66 21 17 82 59 37
5 65 19 16 87 58 35
6 62 20 16 81 54 31
7 61 21 15 83 63 29
8 61 20 15 93 55 29
9 58 19 14 89 50 29
10 56 19 14 94 47 28

Table 4.4
Number of iterations needed to approximate the Karcher mean up to the error 1.e-11 by means

of the iteration (4.1) (a), starting with the identity matrix, the arithmetic mean

and the Cheap mean.

for approximating the Karcher mean relying on the iteration

Xν+1 = g(Xν), ν = 0, 1, . . . ,

g(X) = X − ϑX1/2
k∑

i=1

log(X1/2A−1
i X1/2)X1/2,

(4.1)

starting with X0 equal to the identity matrix, the arithmetic mean and the Cheap
mean. Here we have choosen the value of ϑ which minimizes the number of iterations.
It is interesting to point out that the number of iterations required is much larger
than the number of iterations needed to approximate the Cheap mean which in all the
treated cases is less than or equal to 5. Moreover, choosing as starting approximation
the Cheap mean yields a faster convergence.

We conclude with an example showing the mutual distance of most of the means
of interest. We consider the following matrices

A =
[

3 2
2 3

]
, B =

[
2 1
1 2

]
, C =

[
1 0
0 2

]
, (4.2)

and we compute the ALM, BMP, Cheap, ExpLog and the Karcher means of them.
Moreover, we compute the arithmetic-harmonic-geometric (AHG) mean, that is the
geometric mean of the arithmetic mean and the harmonic mean. The latter does not
satisfy most of the ALM properties, but it is easy to compute. In Figure 4 we have
plotted the corresponding points in the three dimensional space of 2 × 2 symmetric
matrices. One can observe that the ALM, BMP, Cheap and Karcher means are very
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Fig. 4.1. Localization of the ALM (A), BMP (B), Cheap (C), Arithmetic-Harmonic-Geometric
(D), ExpLog (E) and Karcher (G) mean for A, B and C as in (4.2)

near to each other, while ExpLog and AHG means are relatively far from the others.
This is a typical situation that makes the Cheap mean preferable with respect to the
ExpLog and AHG means.

5. Conclusion and open questions. We have introduced a new definition of
geometric mean which, unlike the ALM means, can be computed with low computa-
tional effort even for a large number of input matrices (Cheap mean). We have proved
its local convergence and that it fulfills most of the ALM properties.

Several problems remain open. A proof of global convergence of the iteration for
the Cheap Mean is missing; concerning the lack of monotonicity, it would be inter-
esting to find out under which conditions on the matrices Ai the Cheap mean keeps
monotonicity. For instance, it seems reasonable that if the matrices Ai are close
enough to each other then monotonicity should be satisfied.
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